Classifying Nocturnal Flight Calls using Non-Negative Matrix Factorization (PRISM 2022)

Caitlin Wiley

What is a Nocturnal Flight Call?

A NFC is how birds communicate to one another when travelling at night. The short sounds sometimes go unnoticed to the human ear.

American Redstart NFC

What is Non-Negative Matrix Factorization?

NMF is a process that factors a matrix of non-negative numbers into smaller matrices. From here NFCs are classified based on what can be extracted from the image.

Dataset and Testing

- Five Warbler and Two Sparrow species.
- The Data was split 40-60.
 - 40% being what was tested.
 - 60% what was used as a "training" set.

Project Management

Search or jump to	/ Pull requests Issues Codespaces Ma	arketplace Explore				Ċ +• @•
🖟 jdymacek / MAFR 🔍					⊙ Unwatch 3 →	😲 Fork 1 🔹 🚖 Starred 1 🔹
<> Code 🕑 Issues 11 Pull requests	⊙ Actions ⊞ Projects 🖽 Wiki 😲	Security 🗠 Insights				
	🐉 main 🗸 🐉 1 branch 💿 0 tags		Go to file Add file -	<> Code -	About	
	EddyJohn51 added tools for reconstru-	cting spectrograms and patterns		① 226 commits	NFC recognition with NMF	
	🖿 doc					
	🖿 old	updated simple			3 watching	
	src 🖿	added tools for reconstructing spectrogram			7 1101K	
	🖿 tests	Rename testMAFR.py to tests/testMAFR.py			Poloscor	
	🖿 tools	Updated tools			No releases	
	🗋 .gitignore				Create a new release	
	🗅 README.md	Update README.md				
				Packages		
	README.md			Ø	No packages published Publish your first package	
	MAFR				Contributors	
	Magnificent Frigatebird NFC reco	gnition using NMF	EddyJohn51 John Eddy			

My Role:

I worked with students participating in the Summer 2022 PRISM program lead by Dr. Julian Dymacek.

I worked for approximately 4-6 weeks over the summer while I was working in Admissions part time.

My job was to write some side tools for the project and research topics that were relevant to what we were working on.

What I did.

- Analyzed nocturnal flight calls to identify unique patterns.
- Pair programed in HTML to examine nocturnal flight calls.
- Designed a tester program.
- Designed a program that determined the highest accuracy between a image and a .nmf.
- Auto Eigen program for distributed testing.
- Javascript program.

Analyzing NFC's

White-throated Sparrow

Swamp Sparrow

Savannah Sparrow

HTML Interface

This interface was pair programmed with a PRISM student.

The purpose of this program:

- Help Identify where the best place to cut the image at.
- Identify the best way to extract the NFC from the image without excessive noise.

Image Results

Tester Program

Overall this program was to ensure that the image was being correctly translated to a matrix. This was also to confirm that we were passing the correct layout to functions.

- Opened and image file.
- Converted to a matrix.
- Did some conversions to an array for each "line".
- Wrote the output to an output file.

Tester program output

256x256

		-																																											_		_			
4	4 4	4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	1 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4	4 4 4	4 4	4 4	4 4 4
4	1 4	4 4	4 4	1 4	4 4	4 8	10	11 1	10 7	5 4	4	4 4	4 4	7 1	1 15	17	17	16 1	2 4	4 4	4 7		1 4	4 8	11	13 1	4 1:	28	8 1	0 12	13	12	64	4 4	4 1	1 14	13	10 4	4 4	4 (5 14	17	20 :	22 4	4 5	5 13	20 2	25 2	8 30	29 2
6	25	28	30 3	31 2	9 22	2 4	8 10	4 8	3 20	29	35	40 4	3 45	44	42	37 3	30 2	3 24	25	27	27 2	27 3	37	42	44	43 4	0 3	9 40	40	39	34	34 3	7 38	41	45	49 5	0 48	44	38 3	1 28	3 34	38	41	43 3	6 41	43	41 3	37 3	3 33	40 4
4	44	42	35 2	25 2	6 26	5 26	27	31 4	10 4	4 47	50	51	51 5	2 5	1 47	40	32	29 2	9 30																															
2 4	4 4	4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	5	3 10	10		4 4 4
	4 4	4 4	4 4	1 4	4 4	4 8	12	13 1	10 6	4 4		4 4		4 4	4 4	4 4	1 14	20	21 1		6 15	5 16	17	4 4	14	20 2	1 2	3 25	27	29	29 2	29 2	8 26	22	18	9 23	25	25 2	6 29	30	29	26 2	2 1	9 16	13	17 :	20 17	7 12	4 1	4 26
28	3 23		4 14	1 20	18	15	10 4	4 9	9 16	21	26	33 3	8 42	44	44	44 4	13 4	2 40	36	32	30 2	28 2	3 33	37	43	47 5	0 5:	2 54	53	51	47 4	41 3	5 31	33	34	30 4	3 41	39	35 3	4 4) 46	49	50	48 4	4 38	35	37 1	37 3	6 28	28 2
	21	21	27 3	34 3	8 42	2 43	42	44 4	15 4	4 42	36	32	36 3	9 3	9 37	38	43	47 4	6 42	39	41	48	52 5	3 52																										
34	4 4	4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4 4
	4 4	4 6	5 4	1 4	4 4	4 4	4 4	4 4	1 5	6 8	10	16 1	3 10) 4	4 4	4 7	5 4	4 4	4 4	4	4 4	4 9	14	16 1	6 1	3 10		4 4	4 4	4 4	4 1	10 9	8 4	4 9	17	18	16 7	4 1	3 20	23	22	20 1	6 1	1 9	12 1	8 2	3 27	30	32 3	4 35
36	5 37	37	38	38	27 2	25 2	3 26	33	38	40 4	0 3	6 25	9 3	30 3	8 41	39	35	23 1	8 26	35	40	44	46 4	7 45	5 4 4	43	43	42 4	1 3	3 33	34	33	34 3	7 36	5 32	30	38 4	5 47	46	40 2	27 1	4 27	35	18	19 3	35 40	0 42	41	42 4	5 48
49	9 4 9	46	42	37	33 2	24 5	0 48	47	44	38 3	34 3	9 45	48	51	50 4	8 42	2 32	15	23																															
4 4	4 4	4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4 4
2	4 4	4 1	1 8	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 11	14	14	14 1	4 14	1 14	11	6 4	4 4	4 4	4	5 14	2.0	24	26 2	5 2	2 15	4	4 4	4 4	4 4	4 2	1 27	33	36	36 3	4 2.9	21	12 .	7 6	5 9	13	11 4	37	34	33 3	5 38	40	41 39
	36 3	3 3	0 30		29	29	29 2	6 17	1 5	15 2	8 3	6 40	43	43	40 3	3 10	2 22	34	40 4		6 17	23	33	38 3	39 3	6 27	15	32	41	46 5	0 5:	3 54	53	38 3	37 3	4 26	23	33 3	9 43	46		53 5	5 5	4 51	48	49 .	7 2.5	35	39 4	2.46
51	1 54	56	56	55	53 5	50 4	7 43	45	33	40 4	6 5	2 57	60	62	61 5	6 48	3 34	36	48 5	3 5	5 5 3	3																												
5 4	4 4	4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	1 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4 4
· ·	1 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 9	13	15	4 8	13	17 2	0 22	23	21	16	10 4	6	12 1	7 2	2 25	4 1	2 21	26	29	28 2	3 17	15	15	15 1	6 21	28	30	30 3	20 3	1 39	41	41 3	9 36
23	2 22	21	25	25	21 3	21 2	0 20	10	22	20 2	0 1	6 10	50	10	15 2	0 21	20	16	20 1	5 1	51	10	17 1	0 50	51	51	10	16 1	2 2	6 20	25	20	12 1	52	55	55 5	1 10	1 2	5 15	17	11	21 2	0 31	1 27	10	11	50 5	2 52	54	55 55
	5 5 5	5 5	1 52	50	17	17	50 5	2 5/	1 10	20 3	22	20 4	6 53	156	10 0	52 /	17 1	0 41	16	10	NO N	7	1/ 1	0 50	, JI	JT	49	10 9		0 30			10 4	55	55	JJ J	1 40	7 3	5 45	/ 4/	44	54 2		5 51	40	41 .	JU J2		54	55 55
6 1		1	4 J2	1 1	4/	1 1	1 1	1 1	1 1	1 1	23	2 9 4 1 1	1 1	1 1	1 1	1	1 1	1 1	40	40	40 4		1 1	1 1	1 1	1 1	4	1 1	1 1	1 1	4	4	1 1	1 1	1 1	1 1	1 1	1 1	1 1		1	1 1	1 1	1 1			1 1	1 1	1 1	1 1 1
0 4	4 4	4	4 4	4 4	4 9	± 4	4 4	4 4	4 4	4 4	4 1	4 4	4 4	4 4	10 1	4 1	1 1 2	4 4	4 4	4 4	4 4	10	1 -	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	1 1	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 0	± 4	4 4	4 4	4 4	4 5	26	1 4 9	1 4	4 4	17 0
	1 4	4 4	4 4	1 4	4 /	0 4	4 4	4 4	4	4 4	4 1	0 1/	1/	10	13 1	1 0	1 13	14	14 1	2 1		_ 13	10 0	10 2	10 2	2 10	20	4 4	4 4	14	23 4	28 3	0 29	21	22	12 2	1 22	14	4 4	4 8	11	18 2	5 3.	1 30	3/	30 .	34 30	20	23	1/8
4	4 4	4	4 14	1 28	35	39	40 3	8 34	4	14 2	1 2	1 20	20	20	20 2	1 20	30	34	30 3	1 3	0 31	4	12 2	4 31	34	34	33.	3U 2	3 I	9 29	35	30	32 2	5 11	42	42	41 J	/ 30		18 .	21 3	5 35	43	45	45 4	5 4.	3 40	55	55 5	3 49
4:	5 41	38	34	26	35 4	10 5	1 54	53	50	45 4	6 4	/ 49	52	54	54 5	3 52	2 53	54	55 5	4 5	3 51	4/	40																											
74	4 4	4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	1 4	4 4	4 4	4 4	4 4	4	1 4	4 4	4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4 4
4	1 4	4 4	4 4	1 4	4 4		2 15	14	12	10 8	5	4 4	15 1	4 1	3 14	17	20	22 2	2 19	15	74	4	3 10	10	4 7	17	21 :	23 2	4 2	5 25	23	19	13 7	4 4	4	8 27	25	20 1	2 4	6 1	7 21	23	23	22 2	0 19	20	22 2	23 2	7 13	12 2
0	25	29	30 2	28 2	3 16	5 17	25	30 3	30 2	7 21	. 23	13	15 2	:3 3	0 35	37	39	39 3	7 34	31	28	28	27 2	4 12	2 18	13	25	35 4	1 4	3 40	31	20	23 2	5 21	. 12	22	32 3	8 37	39	42 4	45 4	6 47	47	47	46 4	6 4	/ 49	49	47 4	5 37
26	5 21	29	37	41	40 3	37 3	6 44	52	58	60 6	51 6	0 56	29	20	13 1	1 19	32	39	42 4	4 4	9 54	58	61	61 6	50 5	9																								

Written to determine the highest coefficients/percentages between a NFC and a tester image.

- Converted and Image to a matrix.
- Took the pseudo inverse of the matrix.
- Multiplied with the NFC to produce the coefficients.
- Extracted the coefficients.
- Produced a tuple with the value and a label.
- Sorted so the highest coefficient would be first.

Highest Accuracy Program

Auto Eigen

This program allowed us to exhaust the search space by running on multiple machines in the lab.

The results were then placed into a csv file where we could examine the output

Auto Eigen Results

Patterns	Width	Removed	Accuracy
20	36	100	0.754
20	36	101	0.756
20	36	102	0.787
20	36	103	0.764
20	36	104	0.768
20	36	105	0.741
20	36	106	0.766
20	36	107	0.764
20	36	108	0.727

Javascript Program

This program divided an image into grid points, allowing us to select the grid points we wanted to use.

CMSC Courses Used

CMSC 381 - Image Processing

CMSC 280 - Experience learning a new language, this helped with learning HTML.

CMSC 262 - Data Structures (pair programming), git, Reading others code

CMSC 208 - LaTeX

References

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization http://oldbird.org/pubs/fcmb/species/sparrows/wtsp/wtsp.htm http://oldbird.org/pubs/fcmb/species/sparrows/swsp/swsp.htm http://oldbird.org/pubs/fcmb/species/sparrows/savs/savs.htm http://oldbird.org/pubs/fcmb/species/warblers/amre/amrenfc.htm

