Exploring the Expression of Green Fluorescent Protein (GFP) if selected by a Transformed E.coli in Bacteria James Rakes and Anthony Anderson Biol 250-01 - Introduction to Genetics and Cell Biology, Longwood University

Background

- The Green Fluorescent protein (GFP) is commonly used as a model in biotechnology due to its bioluminescent properties (Chalfie et al.,1995).
- GFP was first found in the Aequorea Victoria Jellyfish

Figure 1: Image of the Aequorea Victoria Jellyfish expressing GFP

Results

Figure 2: Image of the Electrophoresis Gel marker 1 shows the negative control, marker 2 shows the positive control, markers 3 through 5 show GFP amplicons, and marker 6 shows the base-pair ladder used to find the approximate base-pair length.

+pGLO / LB + AMP

- Fluorescent properties of GFP may be used in order to identify the presence of proteins in organic structures (Zhou et al., 2014).
- In this experiment, the Green Fluorescent Protein (GFP) gene present in the pGLO plasmid was characterized
- pGLO plasmid was transformed into E. coli bacteria with ampicillin, Luria Broth, and arabinose, in order to lead to growth of E. coli colonies

Specific Aim

Research Question: Will the GFP protein be expressed when it is transformed into the E.coli bacteria.

Hypothesis: If the pGLO plasmid survives inside the E.coli bacteria then the GFP protein will be expressed in the presence of arabinose.

Key: LB - Luria Broth ARA - Arabinose **AMP - Ampicillin Antibiotic** -pGLO - Not Containing the pGLO plasmid +pGLO - Containing the pGLO plasmid

Figure 3: Image of the four agar plates. plate 1 shows the -pGLO plate with the Luria Broth, plate 2 shows the -pGLO plate with the Luria broth and Ampicillin antibiotic, plate 3 shows the +pGLO plate with the Luria broth and the ampicillin antibiotic, plate 4 shows the +pGLO plate with the Luria broth, arabinose, and ampicillin antibiotic.

pGLO_AA

Figure 5: shows the genetic map of the pGLO plasmid breaking down the the Arabinose-C gene, pBAD promoter, GFP gene, and the AmpR gene

GFP_F1 (1260 ... 1280)

Figure 6: shows the chromatogram of the GFP Amplicon

Methods

TIMELINE

• This study proved that under the correct circumstances and when transformed with the pGLO plasmid the E.coli bacteria will express GFP.

Conclusions

- some limitations for our study were:
 - The number of trials conducted
 - The PCR Amplicon could have been contaminated when sent to be sequenced by Eurofins Genomics
 - Experimental error may lead to imprecise results
- Future directions may be composed of using the GFP gene in pGLO to observe localization of proteins that lead to diseases.

References

Chalfie, M. 1995. Green fluorescent protein. Photochemistry and Photobiology, 62, 651 656.

Zhou, Yawen. 2014. Green Fluorescent Protein. Embryo Project Encyclopedia, 1940-5030.

Tsien Y. Roger. 1988. THE GREEN FLUORESCENT PROTEIN. Howard Hughes Medical Institute; University of California, San Diego.

Andrei M. Jan 29, 2021. An incursion in the colorful world of fluorescent proteins. ZME

