The Effect of Water Flow on the Bacterial Diversity of

Lancer Park

William Kish and Adonel Grubb

Background

- A study in Spain concluded that bacterial distribution was linked to fast and slow moving water conditions (Berrendero et al. 2006).
- In 2013, a study done in Hawaii concluded that cell abundance decreases from low to high flow river conditions due to large communities being flushed away (Weigner) et al. 2013). This study was conducted in freshwater, and it's expected that there will be a high bacterial diversity compared to marine and intertidal wetlands (Wang et al. 2013).

Specific Aim

- **Research Question:** To compare the bacterial diversity of Buffalo Creek and Lancer Park's research pond freshwater systems (Fig.1)
- Hypothesis: Cellular abundance and diversity will be higher in the stagnant Lancer Park research pond than in Buffalo Creek.
- **Importance:** This research is important to understand the different types of bacteria and how diverse and abundant they can be in Lancer Park.

Methodology

Results

Trials	Pond	
1	N/A	3.81
2	N/A	4.18
3	N/A	2.43
Average (s)	N/A	3.47
Distance (m)	1	1
Speed (m/s)	0	0.29

Retention

lime

Buffalo Creek

Figure 1. Site Descriptions. (A) Picture of Retention Pond site. (B) Picture of site at Buffalo Creek. (C) Flow rate for both sites.

Figure 2. Colony Diversity and Abundance. (A) Site A colony forms. (B) Site B colony forms. (C)Colony colors between both sites (D)Colony diameter sizes between both sites.(E) Comparison of colony abundance

1	Specie	S	Identity				
	<i>Pseude</i> E06	omonas sp. Strain DS-	98%				
	<i>Pseude</i> strain	omonas punonensis XJPY7	98%				
	Pseudomonas sp. Strain rqb93 98%						
	<i>Pseudomonas straminea</i> strain 98% P1						
Pseudomonas sp. 14K2			98%	98%			
	#	Ends	Coordinates	Length (bp)			
	1	(LeftEnd)-MspI	1-457	457			
	2	MspI-MspI	458-567	110			
	3	MspI-MspI	568-810	243			
	4	MspI-MspI	811-835	25			
			000000	224			

Figure 3. Possible identification of *Pseudomonas* sp. Strain DS-E06 from retention pond. (A) Microscopic image of colony. (B) Gel electrophoresis of 16sRNA PCR product (Lane 1) New England Biolabs (NEB) molecular marker (Lane 2) PCR product (Lane 3) Msp1 digestion (CCGG). (C) Example high quality chromatogram used for BLAST sequencing. (D) Alignment between Pseudomonas sp. Strain DS-E06 rRNA gene sequence and DNA sequence from colony.

Figure 4. Failed identification of bacteria from Buffalo Creek. (A) Microscopic image of selected bacteria. (B) Low quality chromatogram results. (C) Gel electrophoresis of 16s rRNA PCR product (Lane 1) New England Biolabs (NEB) molecular marker (Lane 2) PCR product (Lane 3) MSP1 digestion (CCGG).

Figure 5. NCBI BLAST Results and MSP1 fragments. (A) The top 5 genus species results with the highest identity percentage. (B) MSP1 fragment for *Pseudomonas* sp. Strain DS-E06 (206 bp, 243 bp, 400 bp).

	Concentraion (ng/mL)	Absorbance 260	Absorbance 280	260/280
Site A	82.4	1.648	0.854	1.93
Site B	27.3	0.546	0.280	1.95

 Table 1. Nanodrop. Comparison of sites DNA concentration and absorbance.

Conclusions	Future Direction	References
 A correlation of water flow and bacterial diversity and abundance couldn't be determined due to lack of data. Lancer Park's retention pond colony was identified as genus: <i>Pseudomonas</i> with 	 More repetitions More colonies to sequence Location New stagnant pond New part of Buffalo Creek 	 Berrendero E, Arenas C, Mateo P, Jones B. 2006. Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: Example from the Monasterio de Piedra Natural Park (Spain) [Internet]. [15 Sept 2017];337:12-28. Available from:http://www.sciencedirect.com/science/article/pii/S0037073816000750 Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NFY, Znou HW. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland and marine sediments by using millions of illumine tags. Appl Environ Miembiol Enternet]. [14 Sent 2017b/78(22):8264.8271. Available form:

Microbiol [Internet]. [14 Sept 2017]; (8(23):8264-8271). Available from:

В

Fluorescence under UV (possibly help identify

the exact species of bacteria)

