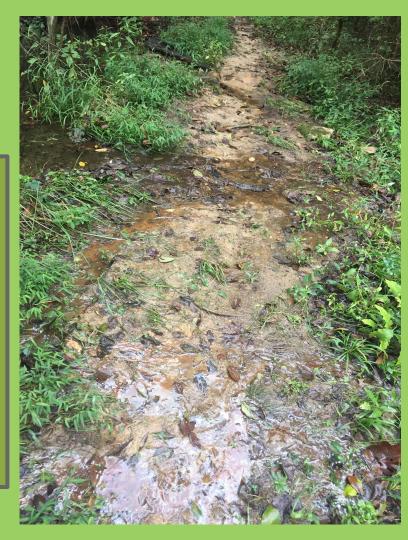


The Effects of **Different Soil** Types on Brassica Rapa Growth

A. Harris, S. Morgan, K. Thornton, C. Toddy

What is Soil?

Upland Soil:


- lack N
- tends to clump (Angers, 1989)

Alluvial Soil:

- composed of the soils that are upstream the river
- normally consists of low K

Potting Soil:

contains optimal amounts of N, K, and P for plant growth (Tripathi, 2014)

Upland Farming

Alluvial Farming

What is Fertility?

Organic Concentration

•

Binds soil particles and improves the water holding capacity

• Affects chemical and physical properties

pH Level

- Fertile soil has a pH between 5.5-7
- Lower pH makes lower levels of inorganic C
- Higher pH lowers
 plant intake of heavy
 metals

Particle Size

- Effectively holds water and nutrients
- Smaller particle size have more holding capacity, but less drainage

Brassica rapa

Research Questions How do alluvial and upland soils differ from each other in physical & chemical characteristics?

What are the effects of **alluvial** and **upland** soil on plant growth?

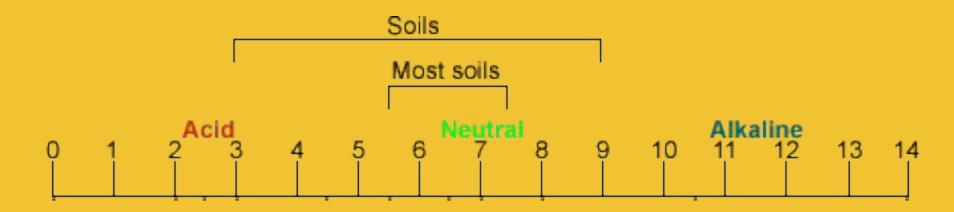
Physical

- Collect **5** samples of each soil from Farmville area:
 - Upland soil
 - Alluvial soil
 - Potted soil
 - (Control)
- Measure:
 Organic Matter
 pH
 Particle Size

Chemical

- 1. Take **16** samples of each soil from original samples:
 - Upland soil
 - Alluvial soil
 - Potted soil (Control)
- 2. Grow 16 Brassica rapa plants in the each of the three soil samples.
 12 styrofoam cell quads, 4 seeds in each
 Grow for 3 weeks
 - Water weekly.
- 3. Record which soil had the most plant growth

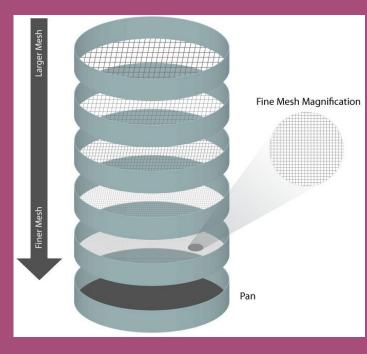
Organic Matter Results



Alluvial: 35% **Upland:** 19% **Control:** 91%

Soil pH Results

Alluvial: 6.7 pH **Upland:** 6.2 pH **Control:** 6.5 pH



l U

Particle Size Results

	Coarse Gravel	Fine Gravel	Coarse Sand	Fine Sand	Silt and Clay	
Alluvial	20%	17%	49%	11%	1%	
Upland (2.64%	19.88%	73.92%	1.72%	0%	
Control	15.2%	22.08%	53.4%	7.44%	0.2%	
Table 1. Particle Size in Different Soils						

Week1

Potting Soil (Control)

Alluvial Soil Upland Soil

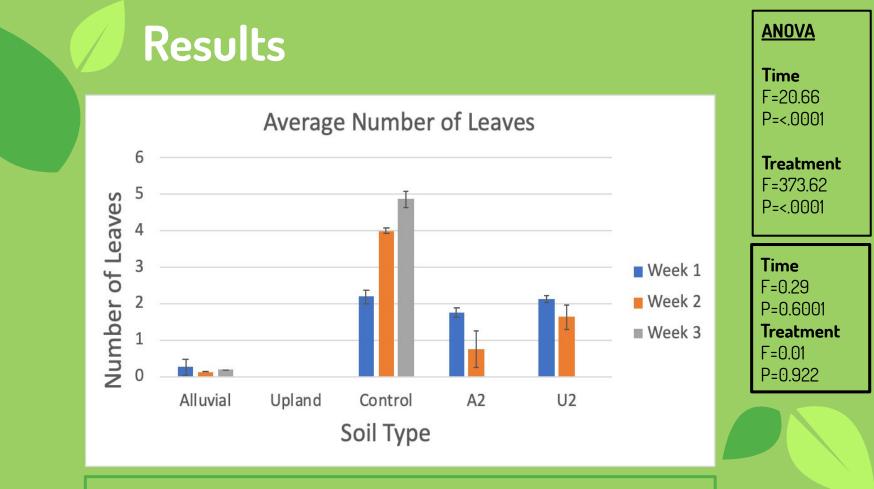


Figure 1. The Number of Leaves Grown on Each Plant in Different Soils

Results

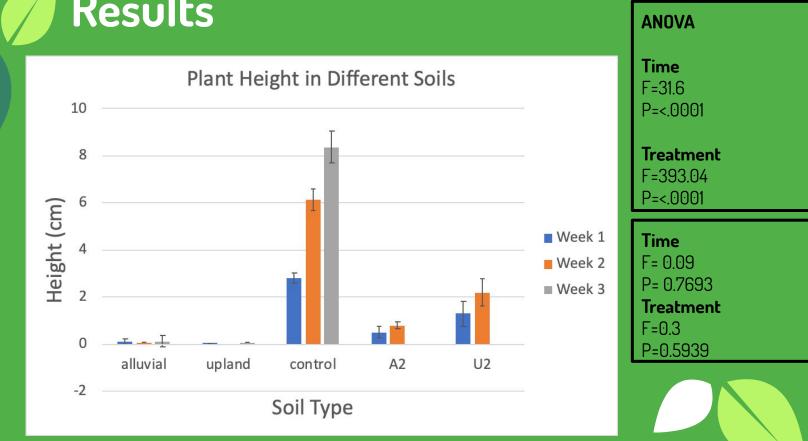


Figure 2. Average Plant Height in Different Soils

Discussion Particle Size

Alluvial:

Dense sediment made growth difficult.

Upland: Too much **coarse** sand.

Second trials: Grew under crushed soil.

Soil pH

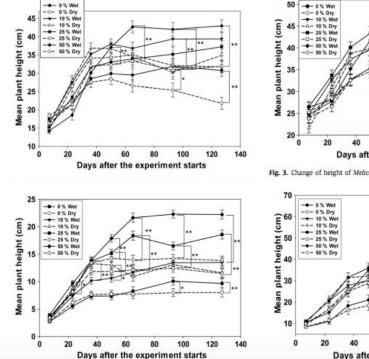
- Brassica rapa grows well between 5.5 and 6.8 pH
 (Duke 1978).
- Soil types varied in pH between 6.2 and 6.7.
- Differences **not** significant enough to influence growth.

	Length (cm)
pH3	17.39
<u>pH4</u>	19.11
pH5	20.45
<u>pH6</u>	20.86
<u>pH7</u>	19.98

Growth of Brassica rapa in varying degrees of pH levels. (Allen & Wold 2014).

Organic Matter

Enjoy extremely high organic matter concentrations more closely resembling control group (Kalpana et. al 2012).


High organic content in soil allows for a self-sustaining microbial community.

Organic Matter

Average growth in varying organic concentrations in 4 plants (Nagase & Dunnet 2011)

50

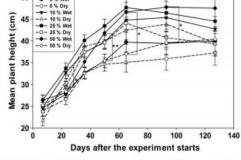
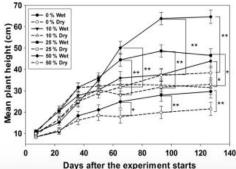



Fig. 3. Change of height of Melica ciliata over time (n=9). Values are compared

Conclusion

- Loose, unconsolidated soil is essential for significant *Brassica rapa* growth.
- High organic matter concentration provides a sustainable habitat for plant growth without the use of fertilizer.
- Natural soils reside at comfortable pH levels for plant growth.

ANY QUESTIONS?

Citations

Angers, D.A., Mehuys, G.R. (1989). Effects of cropping on carbohydrate content and water-stable aggregation of a clay soil. *Canadian Journal of Soil Science*. 69. 373-380.

Duke, J.A., (1983). Handbook of Energy Crops. Purdue University.

Kalpana K.C. McDonald A., McDondald M.R., (2012). Reaction to Plasmodiophora brassicae Pathotype 6 in Lines of Brassica Vegetables, Wisconsin Fast Plants, and Canola. *Horticulture Science*.

Kotak, Sachin, et al. "Complexity of the Heat Stress Response in Plants." *Current Opinion in Plant Biology*, vol. 10, no. 3, 2007, pp. 310–316.

Lyon, T.L., Buckman, H.O. (1922). The Nature and Properties of Soils: A College Text of Edaphology. *Macmillian Company*.

Marschener, H. "Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition." *Field Crops Research*, vol. 56, Issues 1–2, 1998, pp. 203-207, ISSN 0378-4290

Soane, B.d. "The Role of Organic Matter in Soil Compactibility: A Review of Some Practical Aspects." *Soil and Tillage Research*, vol. 16, no. 1-2, 1990, pp. 179–201.

Tripathi, D.K., Singh, V.P., Chauhan, D.K., Prasad, S.M., Dubey, N.K. Chapter 8: Role of Macronutrients in Plant Growth and Acclimation: Recent Advances and Prosceptive. *Improvement of Crops in the Era of Climatic Change*, 2. 197-216.

http://landresources.montana.edu/nm/documents/NM8.pdf http://landresources.montana.edu/nm/documents/NM8.pdf http://pss.uvm.edu/ppp/pubs/oh34.htm