The Life of a Longwood Statistic Student: Linear Regression of Sex and Height on Weight

Authors: Natalie Wood & Kayla Cooksey

Introduction

We wanted to find the linear relationship given weight and height between males and females in Dr. Lunsford's fall semester statistics classes. We observed and analyzed a linear regression model to predict weight given height. The results observed showed that the linear relationship between males and females are positive, but not a good model given the low value of R2.

Data Collection and Description

The populations of interest included male and female statistics students in Dr. Lunsford's stats classes. The variables incorporated height as a quantitative type and explanatory role, weight as a quantitative type and response role, and sex as a categorical type and explanatory role. The Data were obtained from a representative sample of math 171 and 301 students from the Fall 2018 semester. The sample was large enough because n=71, which is greater than 30.

In Figure 1, the linear model showed a positive slope. This relationship was a positive direct relationship, meaning a change in height will produce a corresponding change in weight. The parameters of this model included H_0 : $\beta_1=0$

and H_a : $\beta_1 \neq 0$. If β_1 is equal to 0, then there is no linear relationship between

height and weight, and If β_1 is not equal to 0, then there is a linear relationship between height and weight, whether it is inverse or converse, depends on the direction of the slope.

According to Figure 1, the model is appropriate because the correlation coefficient is positive, which means the data points are closer to the line of best fit.

The simple linear regression statistical model was $Y=\beta_0 + \beta_1 X + \mathcal{E}$, $\mathcal{E}^{N}(0, \sigma)$ and the Predicted line: $\hat{y}=b_0+b_1x$. The parameters were β_0 and $\beta_{1,}$ and the point estimates are b_0 (intercept of the regression line) and b_1 (slope for the regression line).

Analysis

The criteria for linear regression of the model included the confirmation of a random sample and linearity of the of the scatterplot. These can be confirmed because the sample was a random representative sample and that the scatter plot is linear because our R² was between 0 and 1. The criteria for linear regression of the error includes normality, zero mean, constant variance, and independence of the error (Lunsford, 2018). Normality constitutes that the random errors follow a normal distribution,

the zero mean is where the error distribution is centered around 0, the constant variance is where the variance for Y is the same for all the X coordinates, and the independence of the error is that there is no relationship between the errors and the x-values. In Figure 2, approximately 24 out of 71 data points are within the mean confidence. This number reflects the R² coefficient of 34%.

Figure 2 – Shows the bivariate fit of residuals for Weight by Height

When running the test for the hypotheses H_0 : $\beta_1 = 0$ and H_a : $\beta_1 \neq 0$ the t-test is t(69)= 6.41 with p-value p=<.0001 and f-test is F(69)= 41.0881 with p-value p= <.0001. P<.05, therefore, we rejected the null hypothesis and we're

in favor of the alternative that males and females are not equal. when squaring $t(69)= 6.41^{2}= 41.0881= F(69)$ (Figure 3)

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob> t	Lower 95%	Upper 95%	
Intercept	-181.3446	53.42313	-3.39	0.0011*	-287.9208	-74.76839	
Height	5.0605772	0.78924	6.41	<.0001*	3.4860864	6.6350681	

Figure 3 – Parameter Estimates for Weight by Height

The p-value was significant because it was α <0.0001. Figure 3 showed the confidence interval, which relates to the outer ban in Figure 2. Weight increases with height because they were inversely proportional according to R^2 .

The coefficient of determination is R^2 in this model was .393372 (Figure 3). This meant that the proportion of the variance between average heights on average weights was used to gauge whether the predicted number will be directly proportional to the prediction of the model via the amount of total variation.

Veight = -18	1.3446 +	5.06057	72*Height
--------------	----------	---------	-----------

Summary of Fit				
RSquare	0.373372			
RSquare Adj	0.364291			
Root Mean Square Error	30.3592			
Mean of Response	160.4225			
Observations (or Sum Wgts)	71			

Figure 4 – Summary for Fit and Predicted Model for the Linear Regression for Weight by Height

Prediction

The equation of the prediction line was: Weight = -181.3446 + 5.0605772*Height. The predicted weight was calculated by taking the equation of the predicted line and plugging in 68 inches in for height. The corresponding weight, according to that equation, of a Longwood Statistics student who was 68 inches tall was 162.775 lbs.

The residual equation is $Yi - \hat{y}i$ which was calculated by taking the observed data and subtracting it from the predicted calculation. The observed weight was 188 lbs and the predicted weight was 162.775 lbs, resulting in the residual being 25.225 lbs.

The predicted weight for a given height was calculated using the equation of our predicted line. We plugged 72.5 inches into the "Height" variable in the equation: Weight = -181.3446 + 5.0605772*(72.5 inches). This gave us the predicted weight of 185.5472 lbs. The predicted weight interval for this data point was (109.39348, 261.70092) because the

standard deviation for the root mean square error was 38.07686, and for the data to be valid, it must be within 2σ of the mean. This was verified in Figure 5.

The average weight for students who are 72.5 inches tall is 188.6667 lbs. Weight = -181.3446 + 5.0605772*(72.5 inches) = 185.5472 lbs., this means that the average weight for the students that are 72.5 inches tall is more than the predicted weight.

In Figure 5 the confidence interval is the outer band (light red) and the mean confidence is the inner band (darker red).

Fit Mean Mean 160.4225 Std Dev [RMSE] 38.07686 Std Error

SSE	101489.3
Figure 5 – Fit	Mean of the

Weight by Height data.

4 518802

Our model was not good for predicting weight in terms of height because our $R^2 = .373372$. R^2 was closer to 0, therefore was not a good model in terms of fit. If it were to be closer to 1, then it would be a better model and a perfect fit.

When we ran separate tests for the sexes, the P-values were significantly different. As shown in Figure 7, the P-value for males was significantly higher than .05, therefore we would fail to reject the

null hypothesis. Found in Figure 8, the females P-value was significantly less than the males P-value and because it was less than .05 we reject the null hypothesis. You can also see that the graphs are not linear which shows no correlation between weight and height.

 R^2 for males was .04923 (Figure 7) and .117663 for females (Figure 8). Both values were very small, which meant that both models for the individual sexes were very uncoordinated, therefore weak. Performing linear regression on the sexes under one model showed that the R^2 = .373372 (Figure 4). This value was closer to 1 than to the separated R²'s between the two sexes, however, was still not a significant correlation overall.

Figure 6 - The Bivariate Fit of Weight by Height. This shows the Confidence Shaded Fit and Individuals.

Discussion

References

Lunsford, M Leigh. "Inference for Linear Regression." *Math 301: Applied Statistics*. Longwood University, Virginia. 30 Oct. 2018.