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In this project, I will be analyzing data from MATH 301 students at Longwood University from the years 2017-2019. I will be testing if there is a linear correlation between the students’ final course grade in MATH 301 and their previous grades and behavior in MATH 301. This test is important because it can give the university a better understanding of what factors can impact academic performance. In turn, the results of this test can be used by Longwood, and other institutions nationwide, to help in developing more effective general education curriculums.
As mentioned above, I am testing for a linear correlation between the students’ final grade in MATH 301 and a variety of other variables. That being said, the first thing I did was to state the response variable and the explanatory variables. The response variable, also known as the dependent variable, is the variable that is measured in response to the explanatory variables. The explanatory variable, also known as the independent variable, is a variable that can explain why the response variable changes. In this test, the response variable is the students’ final course grade in MATH 301, which will be represented as ‘s’. The explanatory variables are the number of semesters after MATH 171 that MATH 301 was taken (sem), the students’ overall GPA before taking MATH 301 (gpa), the number of missing homework assignments in MATH 301 (mh), the  number of unexcused absences in MATH 301 (ua), the number of excused absences in MATH 301 (ea), and the students’ final course grades in MATH 171 (gr).
After I defined the response and explanatory variables, I then had to define the hypotheses that I would be testing. There are two different hypotheses, the null hypothesis and the alternate hypothesis. The null hypothesis is the hypothesis that we assume is true unless we find evidence against it. The alternate hypothesis is the hypothesis that is actually tested and is only assumed to be true if we find significant evidence for it. In this test, the null hypothesis is that there is no linear correlation (all of the coefficients are equal to zero), and the alternate hypothesis is that there is linear correlation (at least one of the coefficients does not equal zero).
After I defined all of the variables and both of the hypotheses, I needed to decide what test I was going to do and ensure that all of the test conditions were met. Since we are analyzing correlation between a response variable and multiple explanatory variables, I decided that we would need to perform a multiple linear regression test. The conditions for a multiple linear regression test are the same as the conditions for a regular linear regression test. We need to ensure that the data is from a reliable source or the sample is a simple random sample. Also, we need to analyze the scatterplots to check for any possible simple linear correlation and ensure that there are no outliers. We know that the data came from a random sample, not a simple random sample. That being said, we need to assume that the population is represented in the sample. On the other hand, this data came directly from Longwood University, so it is safe to assume that the population is represented because the data came from a reliable, reputable source. Figure 1 shows the matrix of scatterplots that can be made with all of the data that we were given. By looking at these scatterplots, we can see that there are no real outliers in any of them. Also, we can see that there is possible simple linear correlation between the amount of excused absences and the number of missing homework assignments, the number of missing homework assignments and unexcused absences, the students’ overall GPAs and their final MATH 301 grade, and their final MATH 171 grade and their final MATH 301 grade. That being said, it is worth noting that none of these possibilities are very strong, they are relatively weak [image: ]patterns.
Figure 1: Matrix of all possible scatterplots.

After ensuring that all test conditions were met, I then decided what the significance level for the test would be. The significance level is the value that the p-value of our test needs to be smaller than in order for us to assume the alternative hypothesis is true. It is important to note that when determining a significance level, the sample size matters. Since we have a relatively small sample size (n = 21), I decided to use .01 as the significance level.
Next, it was time for me to run the test. In order to run the test, I used the computer software, SPSS. As mentioned above, I decided to use a multiple linear regression test to analyze for correlation between the variables. After I entered all of the data into a SPSS spreadsheet, I used the built-in linear regression test to analyze the correlation between the students’ final course grade in MATH 301 and all of the explanatory variables. Figures 2, 3 and 4 show the results of the initial linear regression test. Figure 2 shows the strength of correlation (R) and the fraction of the variability (R Square). The fraction of the variability tells us that 68% of the data’s variance is explained by our line. R tells us that our data is about 82.5% correlated. As shown in Figure 3, the f-statistic of this initial test was 4.962 with a p-value of .006. Since the p-value is less than the significance level that we declared earlier, there is significant evidence that our alternate hypothesis is true. Figure 4 shows the coefficients and the p-value for each explanatory variable. Using this table, we can come up with the equation for the linear regression line, which is s = -1.900 - .277gr + .066sem + 1.713gpa - .001mh + .028ea +.070ua. 
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Figure 2: Table from SPSS showing the strength of correlation and the fraction of the variability.
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Figure 3: ANOVA table from the initial test in SPSS

[image: ]Figure 4: Table of coefficients from the initial test in SPSS
	
As mentioned above, Figure 4 shows us the p-values for each explanatory variable. This data allows us to make improvements to the equation of the linear regression line. Since the p-values for all of the variables are not less than .01 (our initial significance level), we can remove variables one-by-one to improve the quality of our line. When doing this, you always start with the variable that has the highest p-value. This process is repeated until all of the remaining variables’ p-values are below the initial significance level. In our test, the first variable that was removed was the number of missing homework assignments in MATH 301, followed by the number of excused absences in MATH 301, the number of semesters in between MATH 171 and MATH 301, the number of unexcused absences in MATH 301, and the final course grade in MATH 171 in that order. The variables were removed descending order of significance.
After removing all of the insignificant variables, we were left with the best linear regression line. Figures 5, 6, and 7 show the results of our final iteration of the test. Figure 5 shows that our values for R and R square actually decreased as we removed variables. Figure 6 shows that the f-statistic for our final iteration of the test was 24.919 and our p-value was .000. When compared to the values shown in Figure 3, we can see that our test became more significant after we removed the variables. Using the values in Figure 7, I came up with the equation for our final linear regression line, which was s = -.851 + 1.192gpa. I knew that I was done removing variables because the significance level for the students’ overall GPA before taking MATH 301 was .000, which is less than our initial significance level of .01.
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Figure 5: Table from SPSS showing the strength of correlation and the fraction of the variability for the final iteration of our test.
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Figure 6: ANOVA table from the final iteration of our test
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Figure 7: Table of coefficients from the final iteration of our test.

Now that we have the final equation of the linear regression line, we need to generate the residual plot to get a good sense of how reliable our equation actually is. To generate the residual plot, I used SPSS to get the residual values and the predicted values for each data point. I then created a scatterplot with the residual values on the y-axis and the predicted values on the x-axis. Figure 8 shows the residual plot for our line of linear regression. Analyzing the residual plot, we can see that the residual plot is quite good. The data is evenly spread between the positive and negative values and there is no obvious pattern anywhere in the plot. In conclusion, the residual plot reinforces the reliability of our line of linear regression, so it is safe to assume that the line is a good fit for the data.
[image: ]
Figure 8: Plot of the residuals for our final line of linear regression.

	After performing this test, we can conclude that there is a linear correlation between the students’ final course grade in MATH 301 and the students’ overall GPA before taking MATH 301. The p-value from our linear regression test supports this claim as the p-value was smaller than our initial significance level. In addition, the residual plot supports the reliability of our linear regression line because there is no obvious pattern in the residuals and the residuals are evenly spread between the positive and negative values.
	In summary, we tested for a linear regression between a students’ final course grade in MATH 301 and a plethora of explanatory variables. In order to do this, we first defined our variables and hypotheses that we were going to test. Next, we had to declare the test we were going to use and ensure that the conditions for that test were met. For a linear regression test, we had to ensure the data was from a reliable source and/or the data was a simple random sample. The data that we used was from a random sample, but it came from Longwood University, a fairly reputable and reliable source. In addition, we needed to analyze the matrix of scatterplots to look for any possible simple linear correlation. After ensuring all of our conditions were met, we then had to decide what our significance level would be. When deciding what the significance level should be, it is important to keep the sample size in mind (a smaller sample size needs to have a smaller significance level). After deciding what an appropriate significance level would be, I ran the linear regression test on SPSS. After noting the f-statistic and p-value of our initial test, I decided to remove the insignificant variables from the test. I did this in descending order of significance until all of the remaining variables were significant.  This process helped to improve the linear regression line. After creating the equation for our final line, I created the residual plot in order to reinforce the line’s reliability. The residual plot was quite good as the data had an even, vertical spread and there were no obvious outliers or patterns in the residuals. In short, our test showed that there is a linear correlation between the students’ final grade in MATH 301 and the students’ overall GPA before taking MATH 301. The results of this test can be taken by Longwood, or other institutions nationwide, and be used to develop more effective and efficient general education curriculums. In addition, other institutions can use a similar test to measure the success of their students in various fields.

APPENDIX OF SAMPLE DATA USED

	Final Grade in MATH 171
	Number of Semesters Between MATH 171 and MATH 301
	Students’ Overall GPA before MATH 301
	Number of Missing Homework Assignments in MATH 301
	Number of Excused Absences in MATH 301
	Number of Unexcused Absences in MATH 301
	Final Grade in MATH 301

	3.0
	2
	2.85
	1
	0
	1
	[bookmark: _GoBack]2.0

	4.0
	1
	3.39
	0
	0
	0
	3.0

	2.3
	5
	2.70
	0
	0
	1
	3.0

	3.0
	2
	2.54
	0
	1
	0
	1.3

	2.0
	2
	2.67
	0
	0
	0
	2.3

	1.7
	6
	2.48
	2
	0
	2
	3.3

	3.7
	2
	3.39
	0
	5
	0
	3.3

	2.7
	0
	2.54
	15
	4
	4
	2.0

	2.0
	5
	2.22
	1
	0
	0
	1.0

	2.3
	1
	2.96
	5
	2
	2
	2.3

	2.0
	5
	2.64
	6
	2
	4
	2.7

	3.7
	1
	3.20
	0
	0
	0
	2.0

	3.0
	3
	2.37
	9
	1
	3
	2.0

	4.0
	1
	3.94
	0
	2
	0
	4.0

	2.0
	1
	2.89
	0
	1
	0
	2.7

	2.3
	8
	3.30
	0
	0
	1
	3.0

	4.0
	1
	3.87
	0
	0
	1
	4.0

	2.3
	5
	2.44
	2
	0
	0
	2.7

	4.0
	1
	3.79
	1
	1
	0
	3.3

	3.7
	0
	3.61
	0
	1
	0
	4.0

	2.0
	5
	2.95
	2
	0
	4
	3.0
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