
MATH 300 - Final Project - Jessica Donahue

Section 5.1: The Fundamental Theorem of Arithmetic

• Definition 5.1 Let n ∈ Z.

(a) If a ∈ Z such that a divides n, then we say a is a factor of n.

(b) If n ∈ N such that n has exactly two distinct positive factors
(namely, 1 and n itself), then n is called prime.

(c) If n > 1 such that n is not prime, then n is called composite.

• Exercise 5.2 Is 1 a prime number or composite number? Explain your
answer.

The number one is neither prime nor composite. It does not have more
than one factor. Therefore, it is not composite. Furthermore, its only
factor is itself. Thus, it cannot be prime as in order to be prime the
number must have two factors: one AND itself. One is a special case
scenario that is neither prime nor composite.

• Exercise 5.3 List the first 10 prime numbers.

The first ten prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.

• Lemma 5.4 Let n be a natural number greater than 1. Then n can
be expressed as a product of primes. That is, we can write

n = p1p2 · · · pk

where each of p1, p2, . . . , pk is a prime number (not necessarily distinct).

Proof. let n ∈ N such that n > 1 and let p(n) := ”n can be expressed
as a product of primes.” We proceed by induction.
Base step: Let n = 2. Then p(2) is true as 2 is a prime number.
Inductive step: Let k ∈ N. Suppose p(j) is true for all j ≤ k.
Consider k + 1. If k + 1 is prime then p(k + 1) is true. However, if
k + 1 is not prime, then k + 1 = a ∗ b where a and b are not 1 or
k + 1.Therefore, 1 < a, b < k + 1. Hence, By the inductive hypothesis,
p(a) and p(b) are true . Thus, a = p1 ∗p2 ∗ ...∗Pk where all pi are prime
and b = q1 ∗ q2 ∗ ... ∗ ql where all qy are prime. Thus, by substitution
k+1 = a∗b = (p1∗p2∗...∗Pk)(q1∗q2∗...∗ql) = p1∗p2∗...∗Pk∗q1∗q2∗...∗ql.
Since all pi and all qy are prime, p(k + 1) is true.

Hence, by the PCMI, p(n) is true for all natural number n > 1.



• Theorem 5.5 (Division Algorithm) If m,n ∈ N, then there exists
unique q, r ∈ N ∪ {0} such that m = nq + r with 0 ≤ r < n.

(Note: You do not have to prove this theorem.)

The numbers q and r from the Division Algorithm are referred to as
quotient and remainder, respectively.

• Exercise 5.6 Suppose m = 27 and n = 5. Find the quotient and
the remainder that are guaranteed to exist by the Division Algorithm.
That is, find the unique q, r ∈ N such that 0 ≤ r < n and m = nq + r.

If m = 27 and n = 5, then the division algorith equals 27 = 5q + r for
some unique q, r ∈ N such that 0 ≤ r < 5. Notice that 27 = 5(5) + 2.
Since 0 ≤ 2 < 5, the unique q, r ∈ N that satisfy m = 27 and n = 5 are
q = 5 and r = 2.

• Definition 5.7 Let m,n ∈ Z such that at least one of m or n is
nonzero. The greatest common divisor (gcd) of m and n, denoted
gcd(m,n), is the largest positive integer that is a factor of both m and
n. If gcd(m,n) = 1, we say that m and n are relatively prime.

• Exercise 5.8 Find gcd(54, 72).

The factors of 54 and 72 are:
54:1,2,3,6,9,18,27,54
72:1,2,3,4,6,8,9,12,18,24,36,72.
Thus, the gcd(54, 72) is 18.

• Exercise 5.9 Provide an example of two natural numbers that are rel-
atively prime.

An example of two natural numbers that are relatively prime are 4 and
15 as the factors of 4 are 1, 2, and 4 and the factors of 15 are 1, 3, 5,
and 15. Thus, the only factors they have in common are 1 making the
gcd(4, 15) = 1 which, by definition, makes them relatively prime.

• Lemma 5.10 (Special Case of Bezout’s Lemma). If p, a ∈ Z such that
p is prime and p and a are relatively prime, then there exists s, t ∈ Z
such that ps + at = 1.

Proof. Let S = {ps + at | s, t ∈ Zandps + at > 0}. Notice that S is a
subset of the natural numbers. Therefore, S is well-ordered and there
exists a smallest element in S.
For the sake of contradiction let d be the smallest element in S. Since
d ∈ S, ∃s, t ∈ Z such that ps + at = d. Since d, p ∈ N, by the division



algorithm p = dq1 + r1 where 0 ≤ r1 < d. If r1 > 0, then r1 ∈ N and
by substitution r1 = p − dq1 = p − (ps + at)q1 = p − psq1 − atq1 =
p(1− sq1) + a(−tq1). Since (1− sq1), (−tq1) ∈ Z, r1 ∈ S. Thus, r1 < d
but d is the smallest element in S. This is a contradiction. Therefore
r1 = 0. Therfore, p = dq1. Hence d | p. Thus, d is 1 or p since p is
prime. Similarly notice that d, a ∈ N. Thus by the division algorithm
a = dq2+r2 where 0 ≤ r2 < d. If r2 > 0, then r2 ∈ N and by substituion
r2 = a− dq2 = a− (ps+ at)q2 = a− psq2− atq2 = a(1− tq2) + p(−sq2).
Since (1− tq2), (−sq2) ∈ Z, r2 ∈ S. Thus, r2 < d but d is the smallest
element in S. This is a contradiction. Therefore r2 = 0. Thus, a = dq2.
Hence, d | a. Therefore, d is 1 or a since a is prime. However, d cannot
be p and a. Therefore, d is 1. Since d ∈ S, ∃s, t ∈ Z such that
ps + at = 1.

• Exercise 5.11 Consider the natural numbers 2 and 7, which happen to
be relatively prime. Find integers s and t guaranteed to exist according
to Lemma 5.10. That is, find s, t ∈ Z such that 2s + 7t = 1.

Let s, t ∈ Z such that s = −10 and t = 3. Then 2s + 7t = 2(−10) +
7(3) = (−20)+21 = 21−20 = 1. Therefore, 2s+7t = 1 when s = −10
and t = 3.

• Theorem 5.12 (Euclid’s Lemma). Assume that p is prime. If p di-
vides ab, where a, b ∈ N, then either p divides a or p divides b.

Proof. let p be a prime number and let a, b ∈ N such that p | ab. Then
ab = pk for some k ∈ Z. If p | a then the statement above is true.
However, if p - a then gcd(a, p) = 1 as, by the definition of prime, p
only has factors one and itself. Therefore, if p - a the only factor they
can have in common is 1. Hence, a and p are relatively prime. By
Bezout’s Lemma, ∃s, t ∈ Z such that ps+ at = 1. By the properties of
equatily, b(ps+ at) = b(1). By the distributive property, bps+ bat = b.
By substitution, bps + (ba)t = bps + (pk)t = b. Thus, p(bs + kt) = b.
By the definition of divides, p | b. Therefore, if p divides ab, where
a, b ∈ N, then either p divides a or p divides b.

• Problem 5.13 Provide an example of integers a, b, d such that d di-
vides ab yet d does not divide a and d does not divide b.

Let a = 3, b = 4, and d = 6. Then ab = 3(4) = 12. Notice that 6
divides 12, but 6 does not divide 3 nor does 6 divide 4.

• Theorem 5.14 (Fundamental Theorem of Arithmetic) Every natural
number greater than 1 can be expressed uniquely (up to the order in
which they appear) as the product of one or more primes.



Proof. let n ∈ N such that n > 1 and let p(n) := ”n can be uniquely
written as a product of prime numbers.” We proceed by induction.
Base step: Let n = 2, then p(2) is true as 2 is a prime number.
Inductive step: Let k ∈ N. Suppose p(j) is true for all j ≤ k. Consider
k+1. Notice that when k+1 is prime, p(k+1) is true. However, k+1 can
be composite. For the sake of contradiction assume k+1 = p1∗p2∗...∗pk
and k + 1 = q1 ∗ q2 ∗ ... ∗ qj where each pi.ql is prime. Then, by
substitution, p1 ∗ p2 ∗ ... ∗ pk = q1 ∗ q2 ∗ ... ∗ qj. By the associative
property, p1(p2 ∗ ... ∗ pk) = q1(q2 ∗ ... ∗ qj). Therefore, by Theorem 5.12,
q1 | (p1∗p2∗...∗pk) thus q1 | pi for some pi. Similarly, p1 | (q1∗q2∗...∗qj)
thus p1 | qj for some qj. Since every pi and qj is prime, p1 = q1. Thus
k + 1 = p1(p2 ∗ p3 ∗ ... ∗ pk) and k + 1 = p1(q2 ∗ q3 ∗ ... ∗ qj) such that
(p2∗p3∗...∗pk), (q2∗q3∗...∗qj) ∈ N and (p2∗p3∗...∗pk), (q2∗q3∗...∗qj) <
K + 1. Thus, by the inductive hypothesis, p(p2 ∗p3 ∗ ...∗pk) is true and
p(q2 ∗ q3 ∗ ... ∗ qj) is true. Hence, p2 = q2, p3 = q3, ..., pk = qj. This is a
contradiction as k + 1 = p1 ∗ p2 ∗ ... ∗ pk and k + 1 = q1 ∗ q2 ∗ ... ∗ qj are
not uniquely written. Thus, p(k + 1) is true.

Hence, by the PCMI, p(n) if true for all natural numbers n > 1


